
Computers Et Security, 14 (1995) 435-448

0167-4048(95)00008-9

Design of a
neural network
for recognition
and
classification of
computer
viruses
Anastasia Doumas’,
Konstantinos Mavroudakis’,
Dimitris Gritzalis’r2 and
Sokratis Katsi kas’
‘Depmmr ofMathematics, University of the Aegean, Samor GR-83200,
Greece
“Draartment oiInformatics. Technolopical Edtrcafion Insfitrlte qf?fAdrens, < ,
Athens GR- 1.22 IO. Greece

Y

A sufficient number of experiments has been conducted to

ascertain that a neural network can be used as a component of

a computer security system for the recognition and classifica-

tion of computer virus attack. A set of attributes that describe

the system activity and the behavtour of computer viruses has

been identtfied. The error back propagation training algorithm

and the self-organizing feature map have been studied. Several

experiments were conducted using both algorithms, different

learnmg parameters, and two different training sets. For each

architecture, the size of the network with the best perform-

ance was estimated experimentally. Results indicate that both

neural networks can discriminate input patterns, at almost the

same level of accuracy. The number of neurons requtred for

the solution of the specific problem using a multilayer percep-

tron network was smaller than the respectwe number for a

self-organizmg feature map network. Therefore. usmg back

propagation, the training and the recall process were faster. In

conclusion, neural networks were proved to be efficient and

practical devtces for computer virus rccognttion and classitica-

tion, in certain environments.

Keywords: Computer security, Informanon systems sccurlty,

Computer vrrus, Worm, Neural network, Intrusion detection,

Virus recognition, Virus classification.

0167-4048/95/$9.50 0 1995, Elsevier Science Ltd 435

A. Doumas et al./Neural network for virus recognition

1. Introduction

T he number of computer viruses developed to
infect contemporary computer systems increa-

ses rapidly [l-3]. U sers usually have limited
knowledge about viruses. Thus, in the case of an
intrusion, they cannot easily identify a virus with-
out help; even less can they take appropriate
countermeasures to deal with the problem [4]. It
is therefore necessary to build systems that will be
able to monitor the actions performed in a com-
puter system, to detect which of these actions are
malicious, and to decide if these malicious actions
are due to the activity of a computer virus that has
intruded the system. In this sense, a computer
virus can be considered as another type of com-
puter user.

Several models of intrusion detection systems
have already been designed [5-91. Most of today’s
intrusion detection systems are based on the idea
of analysing the audit trails. The audit trails are
sets of audit records gathered through a specific
auditing mechanism. This auditing mechanism
must act below the insecure parts of the system
under monitoring.

Denning [6, 71 proposed a model for a real-time
intrusion detection expert system. This model is
independent of any particular system, application
environment, system vulnerability or type of
intrusion, and provides detection of penetrations
and security violations. The audit records for this
model are generated by the target system in
response to actions performed or attempted by
subjects (initiators of activity) on objects (resour-
ces managed by the system, e.g. files, programs,
etc.). This type of audit record contains informa-
tion about the subject of a specific action, the
object, the action, information about an exception
condition that is raised by the system on return
and information about the usage of resources.
This model includes profiles for representing the
behaviour of subjects with respect to objects in
terms of metrics and statistical models, and rules
for acquiring knowledge about this behaviour

from audit records and for detecting anomalous
behaviour.

At the Computer Science Laboratory of SRI a
similar expert system, the Intrusion Detection
Expert System (IDES) [10, 111, was designed.
The purpose of this model was to observe behav-
iour on a monitored system and to learn adap-
tively what is normal for an individual as well as a
group of users and remote hosts. The main com-
ponents of this model are subjects, objects, audit
records, profiles, anomaly records and activity
rules. The model tries to monitor the standard
operations on a target system, without dealing
with specific subjects or objects. Intrusion detec-
tion is based only on deviations from an expected
behaviour, and security violations can be detected
from abnormal patterns of system usage that can
be represented by audit records. These audit
records can describe, as in Denning’s intrusion
detection model, the actions performed or attemp-
ted by subjects on objects. IDES maintains a data-
base of statistical profiles corresponding to the
description of subjects’ behaviour in terms of met-
rics and statistical models. Such an experimental
anomaly detector based on statistical tests for
abnormality, considering deviations from an
expected behaviour, could be applied in the case
of a virus attack.

In the approach discussed here, it is deemed that
there is a mechanism that monitors the activity of
a computer system (e.g. a computer network) and
creates a set of audit records. An expert system
module or a neural network module can analyse
the audit trail to detect irregular activity on the
system. If irregular activity is detected, a neural
network that is responsible for computer virus
classification is triggered, to specify which virus
has infected the system.

Furthermore, this neural network module could
be independently used as a computer virus classi-
fication and recognition module by a system that
can help users to detect and classify viruses in
case of attack [9]. Artificial Neural Networks

436

Computers & Security, Vol. 14, No. 5

(ANNs)-after training by introducing specific

attributes [1, 31 of virus behaviour-can recognize

a wide variety of viruses and determine whether a

set of actions constitutes virus behaviour.

This paper deals with the implementation of an
ANN that is able to recognize whether a set of

attributes of system activity implies the presence
of a specific virus. Two algorithms are studied to

tind the solution for this kind of problem: the

first is the Error Back Propagation training algo-

rithm (BP) of Multilayer Perceptrons [12-151 and
the other is the Self-organizing Feature Maps

(SOFM) training algorithm [16-181. In detail, the
classification accuracy and the computational effi-

ciency of a layered neural network trained with

the BP training algorithm is compared to that of a
classifier trained on the same data with the

SOFM.

2. General ANN architectures

ANNs are an old field of research for computer

scientists, but because of their inability to over-

come theoretical barriers they were not used for
several years. Many learning algorithms for neural

networks have recently appeared [12, 131 and have
stimulated the application of ANNs to new prob-

lem areas 19, 19--211.

An artificial neural network (ANN) can be

defined [15, 221 as an interconnection of neurons,

such that neuron outputs are connected through

weights to all others, including sometimes

themselves.

A neuron is a linear automaton which realizes a

weighted sum of several inputs according to a set
of weights, and then computes an activation or
transfer function to obtain an output value, called

activation of the neuron. Weights measure the
degree of correlation between activity levels of the

neurons they connect [23]. Neural networks are
often arranged in layers of neurons.

Neural network models can be classified by their

synaptic connection topologies and by how learn-
ing modifies their connection topologies 1221. A

synaptic connection topology and the correspond-

ing neural network is feedforward if it contains no

closed synaptic loops. The neural network is a

feedback or recurrent network, if its topology con-
tains closed synaptic loops or feedback pathways.

In a feedforward network the output is an explicit
function of the input. The input is propagated

through the network and produces the output

right away. The mapping of an input pattern x

into an output pattern o involves no time delay
between the input and the output.

In a contrast, feedback networks always need
some kind of relaxation to reach their equilibrium

state or attractor. In a third category of neural

network architectures, neighbouring cells in a
neural network compete [16, 17, 24-261 in their
activities by means of mutual lateral interactions,
and develop adaptively into specific detectors of

different signal patterns. In this categov, learning

is called competitive or self organizing.

Neural networks learn or adapt when their syn-
aptic topologies change. A system learns or adapts

or ‘self-organizes’ when sample data change

system parameters. In neural networks, learning

means any change in any weight.

An unknown probability density function /l(x)

describes the continuous distribution of input pat-
terns x in the pattern space R”, a few of which the

neural system samples [22]. Learning seeks only
to accurately estimate p(x). There is no need for

learning if p (x) is already known. Sometimes a set
of input patterns is divided into a number of deci-

sion classes 01 categories D,, Dl. , Dk In

response to an input pattern in the set, a classifier

is supposed to recall the information regarding
class membership of the input pattern [15, 27,

281. This process is called classification. If the
network’s desired response is the class number
but the input pattern does not exactly correspond
to any of the patterns in the set, the processing is

437

A. Doumas et al./Neural network for virus recognition

called recognition. When a class membership for

one of the patterns in the set is recalled, recogni-
tion becomes identical to classification. Neural
networks can operate as effective pattern classi-

fiers. The decision classes may correspond to high
probability regions of the probability density func-

tion P(X). Class boundaries then correspond to

low probability regions on the probability

hypersurface.

3. BP learning in multilayer perceptrons

Multilayer perceptrons [12, 13, 15, 29-311 are

feedfonvard networks with one or more layers of

nodes between the input and the output layer.
These layers, that do not have direct connection
to the outside world, are called hidden layers.

The most important attribute of a multilayer feed-
forward network is that it can learn a mapping of

any complexity [15, 321. It can implement arbi-

trary complex input/output mappings or decision
surfaces separating pattern classes. The network
learning is based on repeated presentations of

training samples. The trained network often pro-
duces impressive generalizations in applications

where explicit derivation of mappings and discov-
ery of relationships is almost impossible. This

kind of network is usually trained with the error
back propagation training algorithm.

The BP training algorithm is an iterative process

in which an output error signal is propagated back

through the network and is used to modify weight
values so that the current least mean-square classi-
fication error is reduced. Because BP learning is

so important, it is summarized below in terms of
a step-by-step procedure.

Given are P training pairs {xi, di, x1, dz, . . . , xp,
d,}, where X~ is an (f x 1) input pattern, d, is a
(Kx 1) desired output vector, p = 1, 2, . . . , P and
P is the total number of input patterns. The num-
ber of hidden neurons is J- 1. The outputs y of
the neurons of the hidden layer and the outputs o

of the output layer are of dimension (J x 1) and

(K x l), respectively.

Step 1: Learning rate n >O, momentum constant
a >0 and a maximum error value E,,, are chosen.

Weights of the output layer W and of the hidden

layer V are initialized at small random values. W is

(Kx_/)andVis(]xI).Also,qcl,ytl,E+O.

Step 2: The training steps start here. Input is pre-

sented and the layers’ outputs computed: x+x~,

d+d,, yj =f(vjx), for j = 1, . . ., J, where uj (a
column vector) is the jth row of I/ and ok =

f(t.uBy), for k = 1, K, where wk (a column

vector) is the k th row of I&‘.

Step 3: Error value is computed:

E= (l/2) ; (drok)2+E.
k=l

Step 4: Error signal vectors e, and e, of both layers
are computed. Vector e, is (Kx 1) and e, is

(_J x 1). The error signal terms of the output layer

in this step are: e& = (dk-ok)fk (hk), for k = 1, . . . ,
K. The error signal terms of the hidden layer in

this step are:

$j =_fj (hj) c eok Wkj ,

forj = 1,I.

Step 5: Output layer weights are adjusted:

AWkj(q)CneobXI+a.Avji.(q-l), for k = 1, K
andj = 1,J.

Step 6: Hidden layer weights are adjusted:

Aliii(4)cne,-x,+a’AtIii(4-1), for j= 1,J and
i= 1,I.

Step 7: IfptP, thenp+-p+l, qtq+l and go to
Step 2; otherwise go to Step 8.

Step 8: The training cycle IS completed. If Ec
E rnax, then terminate the training session. Output

438

Computers 6 Security, Vol. 14, No. 5

weights are I&‘, I’, q and E. If E > E,,, then E+O,
p+ 1 and initiate the new training cycle by going

to Step 2.

4. Self-organizing feature mapping

Self-organizing feature mapping (SOFM) [16-l&

331 is based on a neural network that consists of
two layers, an input layer and an output layer. The

input layer is a dummy layer that feeds the output
layer with the input patterns. Each neuron of the
output layer is connected to every neuron of the

input layer via a set of variable reference or code-

book vectors zu E R”.

The basic principle underlying SOFM is com-
petitive learning; especially, Vector Quantization

(VQ) [34] which IS a classical method that pro-
duces an approximation to a continuous probabil-

ity density function p(x) of the vectorial input

variable x, using a finite number of codebook vec-
tors w;, for i = 1, 2, . . , k (where k is the number
of neurons in the output layer for the SOFM

case). Once the codebook is chosen, the approx-
imation of x involves finding the reference vector

w, (winner) closest to x.

In the above principle, the spatial relationships of
the resulting ‘feature-sensitive cells’ are not con-

sidered. All the cells act independently. Therefore

the order in which they are assigned to the differ-
ent domains of input signals is more or less hap-

hazard, most strongly depending on the initial
values of the zu,. Such systems are often called

zero-order topology networks [lS]. In the models

called maps, on the other hand, the localized
feature-sensitive cells respond to the input signals

in an orderly fashion, as if some meaningful coor-
dinate system for different input features, reflect-

ing some topological order of events in the input
si&nal space, were drawn over the ANN. Depend-

ing on the connectivity, such networks can then
be named n-order topology networks. A second-
order topology network is a planar, with a two-
dimensional coordinate system defined over it.

Kohonen [161 has introduced a self-organizing

algorithm that effectively produces a global order-
ing over the network, the latter often reflecting

rather abstract relationships of the data. It is cru-

cial to the formation of ordered maps that the
cells doing the learning are not affected independ-

ently of each other, but as topologically related

subsets, on each of which a similar kind of correc-
tion is imposed. Such selected subsets or blocks

are defined as neighbourhood sets N, around a
neuron c.

The self-organizing feature map aigorithm is

explained below for a planar array of neurons

(Kxj). Given are P input patterns {x1, x2, . . ,
xP},wherexPiisan(nxl)inputpattern,p=l....,
P and P is the total number of input patterns. The

weight vector of neuron i is denoted by ~1, E R”.
The Euclidean distance is used here as a more

convenient measure of similarity between x and

w,.

Step I: t+O. Learning rate a(t) = 0, neighbour-

hood radius N, (t) > 0 and a maximum error value
E ITldx are chosen. The weights W are initialized at

small random values. W is (n x K x I), p+ 1, E+O.

Step 2: Training steps start here. Input is pre-

sented. Find the winning neuron c for which the
best match with input x is calculated according to:

(I x-w, 11 = min{ 11X-wi II>.

Step 3: Error value is computed:

E = (l/2) C (I()~-w~,,)’ +E.
,=I

Stey 4: Weights are adjusted according to (1st

variant):

wf (r + ‘) = i

Wr(t)+U(t)[X(t)-lui(t)], ifiEN,(t),

UJ, (t), if i $ N,-(t),

for i = 1, n.

439

A. Doumas et aLlNeural network for virus recognition

A proper form for a (Ni, t) might be u (Ni,
t) =a(t) exp[- I(ri-rc]]2/(2N,2(t))], where r, and
ri are the position vectors of the winning cell and
of the winning neighbourhood nodes, respec-
tively, and a(t) and NT(t) are suitably decreasing
functions of learning time t. In the above equa-
tions O<a < 1.

Step 5: Ifp<P, then p+-p+l, t+-t+l, and go to
Step 2; otherwise go to Step 6.

Step 6: The training cycle is completed. If E<
E rnax, then terminate the training session. Output
weights are W and E. If E >E,,, then Et 0, pt 1
and initiate the new training cycle by going to
Step 2.

5. Computer virus coding

A computer virus can be defined [35] as a piece of
code (program) containing a self-reproducing
mechanism riding on other programs and which
cannot exist by itself

A neural network can be trained to recognize the
behaviour of a virus. This behaviour can be
described by a set of attributes that correspond
with or are the same as the attributes that describe
activity on a computer system in audit records.

In the recall phase, when a set of attributes of
system activity is presented in the input of the
neural network, the latter should be able to recog-
nize whether the behaviour depicted in this set is
the same or similar to the behaviour of a specific
virus that the neural network has been trained
with. Thus, such a neural network can be used to
analyse (probably in association with an expert
system) the audit trails that a mechanism which
monitors the activities on a computer system run-
ning a DOS operating environment generates, and
to decide about the existence of computer viruses.
The Threat Description Language for viruses
from the Computer Virus Catalogue from Virus
Test Centre (VTC) [3] and the Virus Information

Summary List [2] could provide a first coding of
the input for a neural network.

The set of attributes, specific values for which are
used as input to the neural network in order to
describe the behaviour of a specific virus, is depic-
ted in Table 1. Most of the attributes can take the
symbolic values Yes’, ‘No’, ‘Unknown’, that cor-
respond to the numeric values 1, - 1, 0 (or 1, 0,
0.5) respectively, excluding the attributes for
which these values are defined explicitly.

There are two different training sets which were
used in the training and the recall phase for both
types of network. The first training set contains 49
computer viruses (Appendix A) described by 38
virus characteristics that are almost similar to the
list of characteristics arranged in Tables 1, 2 and 3,
that correspond to 48 different classes. The second
set contains 301 viruses corresponding to 301 dif-
ferent classes described with the 40 virus charac-
teristics. The 300 patterns represent 300 computer
viruses (Appendix B) and the remaining pattern
represents the information that no virus exists.
Each pattern is coded according to the above
attribute values.

6. Virus classification via back propagation

A commercially available software product (Neu-
ral Works) was used for the implementation of the
error back propagation training algorithm. A suffi-
cient number of training experiments has been
made with both training sets.

The training experiments with the second training
set showed the best and most interesting results.

TABLE 1. Numeric values of length size attribute

Length size

Number of bytes

No

Undefined

Varying

6

-1

-3

440

Computers & Security, Vol. 14, No. 5

TABLE 2. Virus attributes list

Attribute

Program virus

COM files

EXE files

COMMAND.COM tile

Extending

Stealth techniques

Self encryption

Boot sector

Hard disk boot sector

Floppy disk boot sector

Floppy only

Boot corruption

Dtsk corruption

Program/Overlay corruption

Data corruption

System hangs and crashes

System reboots

Dtsk problems

Prmter problems

Ports problems

Keyboard problems

Resident

Overwrite\

Spawning

File linkage

Rtmtime slowdown

Bad or lost sectors

Format

Created files

Hidden files

Change size

Length size

Date/time change

Visual display effects

Vizus screen message

Unexpected errors

Beep noise

Melody

Infection trigger

Damage trigger

Description

The virus is a program virus.

The virus infects COM files.

The virus infects EXE files.

The virus infects the COMMAND.COM file.

The virus extends the size of an infected program file.

The virus uses stealth techniques.

The virus uses self-encryption techniques.

The virus infects the partition table of the hard disk or the floppy disk boot sector.

The virus infects the DOS boot sector of a hard disk.

The virus infects the boot sector of a floppy diskette.

The virus infects only the boot sector of a floppy diskette.

The virus corrupts/overwrites the boot sector or the partition table.

The virus corrupts all or part of disk.

The virus corrupts program or overlay files.

The virus corrupts data tiles.

The virus hangs up or crashes the system.

The virus creates unexpected system reboots.

The infected system will experience dtsk problems.

The infected system will experience printer problems

The infected system will experience ports problems.

The infected system will experience keyboard problems

The virus installs itself in memory.

The virus overwrites the beginning of a file.

The virus creates a companion file with the viral code.

Directly or indirectly corrupts the file linkage.

The virus affects system run-time operations.

The virus creates bad or lost sectors.

The virus formats or overwrites all or part of disk

Existence of associated tiles.

The virus creates hidden tiles.

The virus changes the size of an infected program file.

The number of bytes by which the size of the infected file will be increased

The virus changes the date or the time of the infected file.

The virus has some visual display effects.

The virus displays a message on the screen.

The virus displays some unexpected errors.

The virus creates some beep.

The virus plays a melody.

Events which trigger the vnuses to infect.

Events which trigger the viruses to begin their damage

In the first training experiments the second train- The multilayer perceptron with the best perform-
ing set contained 298 viruses instead of 301 ante was that with one hidden layer and 27
viruses. Nine different multilayer perceptron net- hidden neurons. This network was tested with
works were developed and tested with different different values for the parameters of the learning
values for the learning rate and momentum para- rate, the momentum and the noise. These para-
meters (Table 4). meters are given in Table 5. After 250000 training

441

A. Doumas et a/./Neural network for virus recognition

steps, the network correctly created 301 different

classes.

7. Virus classification via SOFM

The best solution for the implementation of the

SOFM was considered to be the development of a

software tool in the C programming language.
This program implements the two different vari-
ants of the self-organizing feature map training

algorithm described above and this implementa-
tion is independent of the specific virus classifica-

tion problem.

In the first variant of the self-organizing feature
map algorithm, the learning rate c(and the neigh-

bourhood radius are decreased exponentially every

time a predefined number of training steps

(sweep) has been accomplished. For the adapta-
tion of the weights wli a Mexican hat lateral
inhibition type function (Gaussian), of the form

of the function a (Ni, t) defined in Section 4, has
been used. The training phase lasts a specific

number of epochs. The epoch (learning cycle) is
defined as a complete presentation of the training

set.

TABLE 3. Numeric values of infection and damage triggers

Infection trigger Damage trigger

Load/execute -1.0 Load/execute -1.00

Random -0.7 Random -0.75

Counter -0.4 Counter -0.50

No trigger 0.0 Infection time -0.25

Other 0.4 Other 0.00

Boot process 0.7 No trigger 0.25

Any time I.0 CTRL-ALT-DEL 0.50

Boot process 0.75

TABLE 5. Learning parameters of the training experiment

According to the second variant of the self-

organizing feature map, the training process is
composed of two training phases. In the first

training phase the initial (or coarse) ordering of

the network activity is attained. Spatial concentra-

tion of the network activity on the cell (or its

neighbourhood), best tuned to each input, is
achieved. In the second phase (final ordering),
further tuning of the best-matching cell and its

topological neighbours to the present input is

done. In both phases (initial and final), the learn-
ing rate CI and the neighbourhood radius are

decreased linearly every time a predefined number
of training steps (sweep) has been accomplished.

The adaptation of weights is based on the first
formula which is defined in Step 4 of the SOFM

algorithm. According to this formula, all weights

of the output neurons that belong to the neigh-

bourhood are defined according to the neighbour-
hood topology, that can be either circular or

rectangular, and the neighbourhood radius N,(t)
around the winning neuron c.

TABLE 4. Results of training experiments with back

propagation

Network Number Hidden Final error Training Noise

of viruses units steps

1st 298 70 0.000 020 245 064

2nd 298 50 0.000 027 200001

3rd 298 30 0.000 030 225 074

4th 301 50 0.000 006 184945

5th 301 30 0~000010 157220

6th 301 20 0.000 170 234 905

7th 301 25 0.000 090 250000

8th 301 30 0.000 009 195597 \/

9th 301 27 0~000012 233211 \:

Training steps I-60000 60001-120000 120001-160000 16000-200000 200001-250000

Noise 10 0 10 0 0

Learning rate 0.9 0.9 0.4 0.4 0.2

Momentum 0.6 0.6 0.4 0.4 0.3

442

Computers & Security, Vol. 14, No. 5

Three different diagrams are used to depict the

state of the network for each training step. The
first one is a Hinton-type diagram which repre-

sents the distances between the input patterns and
the weight vectors of the output nodes. The

smaller the distance, the larger the corresponding
rectangle of the Hinton diagram and the closer the
input pattern to the corresponding weight vector

of the output node. The second diagram is a bar

chart, representing each input pattern the accuracy
with which a specific element of the weight vector

of the winning node for this pattern approximates
the corresponding element of this pattern. Each

bar of this diagram represents the accuracy of a
specific element. With this diagram we can exam-

ine how good a winning node is for a specific

input pattern. The third diagram represents the

following error

E = j 11 x-w, ll’p(x) dx

approximated by the RMS error

where x is the current input pattern, w, is the
weight vector of the winning node that corre-

sponds to this input pattern, np is the size of the
training set and n is the dimension of the input

patterns.

In the following subsections, the results of some
training experiments for the computer virus classi-

fication problem, using the above variants of the

self-organizing feature map algorithm, are given.
These experiments were performed using only the

first training set with the 49 computer viruses.

A training experiment using the second training
set of 301 computer viruses has been developed

on a self-organizing feature map neural network
with a planar array of 40 x 40 output nodes. The

second variant of the algorithm has been applied.
The training was continued for 300000 steps. At
the end of the training process the network could
not discriminate between the classes. It is esti-

mated that a self-organizing feature map with at
least 55 x 55 output nodes can create the appro-

priate clustering for the 301 viruses.

7.1 Experiments using the first variant of the SOFM

A sufficient number of training experiments (6)
using the first variant of the self-organizing fea-

ture map has been done on a 386SX machine with
co-processor. The experiment with the best

results is presented here. A network with a planar
array of 30 x 30 output nodes was created.

The initial learning rate and neighbourhood
radius were 0.5 and 20, respectively, each with a

reduction factor of 0.98. The training process was
continued for 4500 epochs. The sweep size was

900 training steps.

The final learning rate and neighbourhood radius
had values very close to zero. The neural network
had created 47 different clusters. The expected

number of clusters is 48. The network had
erroneously created one cluster for two input

patterns that belong to two different classes. The

RMS error vahle at the end of the training was
0.0019.

7.2 Experiments using the second variant of the
SOFM

A sufficient number of training experiments (4)

using the second variant of the self-organizing
feature map has been done on a 486DX machine.
The experiment described in this subsection is the

one with the best results. A network with a planar
array of 30 x 30 output nodes was created.

In the initial ordering, the initial learning rate and
neighbourhood radius were 0.5 and 17, respec-
tively, and the final learning rate and neighbour-

hood radius were 0.04 and 1, respectively. The
initial ordering process was continued for 3000

epochs. The sweep size in this phase was 1 train-

ing step.

In the final ordering, the initial learning rate and
neighbourhood radius were 0.04 and I, respec-

443

A. Doumas et aLlNeural network for virus recognition

TABLE 6. Learning parameters of the experiments with the SOFM training algorithm

1st variant

Dimension

Learning rate

Learning rate reduction

Neighb. size

Neighb. size reduction

Epochs

Neighb. topology

30x30

0.50

0.98

20

0.98

4500

Mexican hat

2nd variant

Dimension

Initial learning rate

Final learning rate

Initial neighb. size

Final neighb. size

Epochs

Neighb. topology

Initial ordering Final ordering

30x30

0.50 0.04

0.04 0

17 0

0 0

3000 4811

circular circular

tively, and the final learning rate and neighbour-
hood radius were 0 and 1, respectively. The final
ordering process was continued for 4811 epochs.
The sweep size in this phase was 1 training step.
The neighbourhood topology that was selected for
both initial and final ordering was ‘circular’.

The neural network had created 48 different clus-
ters. These clusters correspond to the 48 classes of
the input patterns (Appendix A). This experiment
showed the best results. The RMS error value at
the end of the training was 0.000 0021.

The training parameters for the best training
experiments described in the above paragraphs are
given in Table 6. Finally, the results of these
experiments are summarized in Table 7.

8. Practicality issues

The use of a neural network for computer virus
recognition and classification may require a sub-
stantial level of computing overhead, thus decreas-
ing the performance of a system in use. In
particular, if its use is combined with an expert
system, then the overhead is more serious.

However, whether the above observation is indeed
valid or not depends heavily on a number of fac-
tors. In detail, it depends-inter aliu-on:

l The assets to be protected. If the value of some
of them is high enough, then the suggested
architecture can often be considered as practica-

TABLE 7. Results of the SOFM training experiments

Variant Dimension Training steps Final error

1st 30x30 220 500 0.0019

2nd 30x30 382739 0~0000021

ble, even if the performance of the system will
be considerably degraded. In any case, the final
decision on this issue must be based upon the
findings of an appropriate risk analysis review.

The risks and vulnerabilities of the system in
use. In the case that the system in use provides
input or operates in connection with a depend-
able system (e.g. nuclear plant control informa-
tion system, medical diagnosis information
system, etc.) the suggested solution can be very
well adopted as practicable, even if it leads to
considerably lower performance of the system
in use.

The connectivity of the system in use. In the
case of a network or an internetwork topology,
the risk analysis review may very well lead to
the conclusion that the use of a neural network
for virus recognition and classification is indeed
practicable, since the damaging potential of
malicious software structures (viruses, worms
etc.) in such environments is very high. It is
common knowledge that today’s trend in con-
nectivity is strongly towards these topologies.

The computing power of the system in use. It
can be expected that the performance of the

444

Computers b Security, Vol. 14, No. 5

0

PCs of the forthcoming generations will be
considerably higher than that of the machines

available today. It is already a fact that the (per-
formance) distance between ‘PC’ and Work-
station’ machines is no longer very great, if it

exists at all.

The way the neural network is realized. Hard-
ware-based neural networks provide an effective

means for high performance virus recognition
and classification mechanisms.

As a result, it can evidently been concluded that

even if the proposed solution may look-or be-
impracticable in certain environments, it is prob-

ably practicable in several other cases. The definite
xxwer on its practicability is dependent on con-

text and can be positively ascertained after a
thorough risk analysis review.

9. Conclusions

Several neural network architectures have been
studied. The most appropriate of them, namely

multilayer perceptrons and self-organizing feature
map networks, have been selected for the problem

of computer virus recognition and classification.

The behaviour of (DOS) computer viruses has
been investigated and this behaviour has been

described by simple parameters. These parameters
were used for coding input data for several neural

networks that were used in the training experi-
ments presented in this paper.

A series of experiments using two different train-

ing sets, one with 49 computer viruses and 38
virus parameters and the other with 301 viruses
and 40 characteristics, was performed. The results

from the experiments with both the SOFM and
multilayer perceptrons are promising.

The total number of neurons required for the
construction of a multilayer perceptron network is
smaller than the respective number for the
SOFM. The number of neurons is one of the

most significant factors for the training and the

response (recall) time of a neural network. This is
mainly why the training and the recall process
were faster in the error back propagation training

of the multilayer network.

The accuracy of the results is good with both
training algorithms, but training with the error

back propagation showed very good results after
only a few training experiments.

In Table 8, a number of comparison results are

given for the neural networks training on the
generated training sets.

Although the user does not provide any class
membership information to the SOFM, this

neural network can derive common attributes
from the input patterns and create clusters of

‘similar’ patterns. Consequently, using this neural

network architecture, one can acquire knowledge
about which class (cluster) an input pattern (com-
puter virus information) belongs to, as well as

knowledge about which are the nearest topological
classes, i.e. classes with similar attributes. In con-
trast, using the error back propagation training

algorithm, one knows only the class an input pat-

tern belongs to.

In conclusion, we consider that the most efficient

solution to the problem of computer virus classiti-
cation and reco@tion with neural networks is the

utilization of a multilayer perceptron neural net-

work, trained with the error back propagation
algorithm, because of its comparatively smaller

training and recall (response) time. Evidently, if
the neural network is going to the developed and

TABLE 8. Comparison of back propagation against SOFM

training algorithm

Back propagation SOFM

Number of nodes 27+301 55 x 5.5

Training steps 233211 r400000

Training time/step t 3.61

Response time/step t 2.7r

445

A. Doumas et a/./Neural network for virus recognition

used with a considerably faster machine (faster
than 100 MHz), both architectures can be applied.

A drawback of the suggested architectures is that it

is not difficult to be attacked if the mechanism is
detected already in place. A good answer to this is
to consider the mechanism as part of a well

protected (trusted) system-software component

(trusted kernel), which in turn leads to the need
to design such a kernel. Furthermore, this con-

sideration can be combined with a hardware-based
realization of the proposed solution.

Another drawback of the neural network archi-

tectures is that, if we want to extend the neural
network classifier ability by adding more com-

puter virus categories (since it can fight most

new viruses that fall into one of the existing cate-
gories), we have to start the training procedure
from scratch and must sometimes add neurons to

the network. However, again, neural networks are
a good choice for implementation in hardware,

where both learning and recognition would be
considerably fast and secure.

References

[II

PI
[31

[41

[51

[61

[71

PI

[91

[101

Audit Commission, Opportunity Makes a ‘L%iej An Analy-
sis of Computer Abuse, UK 1994.

P. Hoffman, KSUM-Virus Information List, USA, 1994.

K. Brunnstein, et al., Computer Virus Cat&ye, Hamburg

Virus Test Centre, University of Hamburg, Feb. 1992.

D. Guinier, Prophylaxis for ‘virus’ propagation and

general computer security policy, ACM SIGSAC Rev.,
9(2) (1991) l-10.
K. Brunnstein, S. Fischer-Hubner and M. Swimmer,

Concepts of an Expert System,& Virus Detection, Hamburg

Virus Test Centre, University of Hamburg, 1991.

D. Denning, An intrusion-detection model, in Proc. 1986

IEEE Symposium on Security and Privacy, 1986, pp.

118-131.

D. Denning, An intrusion-detection model, in IEEE
Trans. Softw. Eng., 13(2) (1987) 222-226.
MORI, ICL and DTI, Attitudes towards Information Security
in top UK Companies, Research study, UK Oct. 1993.

D. Guinier, Computer ‘virus’ identification by neural

networks, ACM SIGSAC Rev., 9(4) (1991) 49-59.
D.E. Denning and P. Neumann, Requirements and

model for IDES: a real-time intrusion detection expert

1111

[=I

[I31

[I91

PI

WI

P21

~231

~241

~251

PI

~271

P31

~291

[301

[311

~321

[331

system, SRI Int. (Aug. 1985).

D. Denning, et al., A prototype IDES: a real-time

intrusion-detection expert system, SRI Int. (Aug. 1987).

D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learn-

ing representations by back-propagating errors, Nature,
323 (Oct. 1986) 533-536.
D. Rumelhart and J. McClelland, Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition, Vol. 1:
Foundations, MIT Press, 1988.

F. Rosenblatt, Principles of Neuro-Dynamics, Spartan,

Washington, DC, 1962.

J.M. Zurada, Introduction to Artijciul Neural Systems, West-

Publishing Co., 1992.

T. Kohonen, Self-Organization and Asociative Memory, 3rd

edition, Springer-Verlag, 1989.

T. Kohonen, The self-organizing map, IEEE Trans.
Neural Nertuorks, 28(9) (Sept. 1990) 1464-1480.

J. Kangas, T. Kohonen and J. Laaksonen, Variants of

self-organizing maps, IEEE Trans. Neural Networks, l(1)

(1990) 93-99.

D.J. Burr, Experiments on neural net recognition of

spoken and written text, IEEE Trans. Acoustics, Speech and
Signal Processing, 36(7) (July 1988) 1162-1168.

E. Ifeachor, Neural Networks and their Applications to Health
Care, Medical Electronics Systems & Centre for Intelli-

gent Systems, University of Plymouth, UK 1993.

R. Poli, S. Cagnoni, R. Livi, G. Coppini and G. Valli, A

neural network expert system for diagnosing and treat-

ing hypertension, Computer (1991).
B. Kosko, Neural Networks and Fuzzy Systems, Prentice-

Hall, 1992.

D.O. Hebb, 7’he Organisation of Behaviour, J. Wiley &

Sons, USA, 1949.

S. Grossberg, Adaptive pattern classification and univer-

sal recoding: I. Parallel development and coding of neu-

ral feature detectors, Biol. Cybernetics, 23 (1976) 121-134.

S. Grossberg, Do all neural models really look alike?,

Psychol. Rev., 85(6) (1978) 592-596.

S. Grossberg, How does a brain build a cognitive code?,

Psychol. Rev., 87 (1980) l-51.

R.O. Duda and P.E. Hart, Pattern Classijication and Scene
Analysir, J. Wiley & Sons, New York, 1973.

N. Nilsson, Learning Machines, McGraw-Hill, New York,

1965.

M.L. Minsky and S. Papert, Perceptrons: An Introduction to
Computational Geometry, 2nd edition, MIT Press, USA,

1988.

R.P. Lippmann, An introduction to computing with

neural nets, IEEE ASSP Mag. (Apr. 1987) 4-22.

B. Widrow and M. Lehr, 30 years of adaptive neural

networks: perceptron, madaline, and back-propagation,

Proc. IEEE, 78(9) (Sept. 1990) 1415-1442.
R. Hecht-Nielsen, Neurocomputing, Addison-Wesley,

1991.

J. Hertz, A. Krogh and R. Palmer, Introducrion to the

446

Computers & Security, Vol. 14, No. 5

Throty of Neural Computation, Addison-Wesley, 1991.

1341 M.R. hay, Vector quantitization, ASSP Mug. (Apr.

1984).

understanding for a better defence, ACM SZGSAC Rev.,
7(2) (1989) l--15.

1351 I>. Guinier, Biological versus computer viruses: a better

APPENDIX A

Table Al shows the coordinates of the winning node of the output planar array for each cluster, the virus
patterns that belong to this cluster, and the Euclidean distance between each pattern and the winning node

of its cluster.

TABLE Al. Clusters of computer viruses

Cluster Name Euclidean

distance

Cluster Name Euclidean
distance

(11, 22)
(24, 28)
(05, 10)

(28, 28)

(12, 09)

(07, 16)
(19, 16)

(00, 25)
(28, 02)

(07, 29)
(07, 04)
(22, 05)
(00. 00)

(08, 11)

(01, 02)

(14, 19)
(33, 15)

(14, 00)
(14. 04)
(00, 29)

(03. 07)
(00. 14)
(26. 13)
(00. 11)

1971/8 Times 0.000 4883
4096 0.000 9766

512 0~0000014
5120 0.001953 1
Amstrad 0.0002441
Cancer 0.000 4883
Cascadell7Ox 0.000 3662
Cascade-B/l 701 0.000 3662
Dark Avenger 0.000 4883
Datacrime/ 0.000 4883
DBASE 0.000 4883
Den Zuk 0~0000018
Devil’s Dance 0.000 2441
Disk Killer 0.000 002 1
Do Nothing 0.000 2441
Form 0.000 0026
Fu Manchu 0.000 9766
Ghost COM 0.000 9766
Icelandic 0.0002441
Icelandic II 0.000 244 1
Jerusalem 0.000 4883
Lehigh 0~0000014
Lisbon 0.000 2441
MIX1 0.000 4883
Munich 0.000 0022

(25, 07)

(13, 28)

(04704)

(19,OO)
(04, 00)

(23, 00)
(04, 02)

(10, 14)
(24, 24)

(18, 29)
(10, 04)
(19, 10)

(04, 13)

(08,08)
(04, 19)

(28924)

(03, 43)
(16,25)
(01, 08)

(00, 18)
(03,27)
(00, 05)

(10, 00)
(07, 00)

Murphy 0.000 4883
Oropax 0.000 9766
Ping Pong-B 0~0000018
Saratoga 0.000 2441
Stoned 0~0000017
Suriv A 0.000 2441
Swap Boot 0.000 0026
Sylvia 0.000 4883
Syslo&355 1 0.000 7324
Traceback 0.000 9766
V299 0.000 1221
Vacsina 0.000 4883
Vienna/648 0.000 244 1
Yale/Alameda 0~0000015
Zero Bug/1536 0.000 4883
Machosoft 0.000 7324
Shoe-B 0.000 0020
Advent Virus 0.000 9766
I-Iello-1A 0~0000016

Murphy II 0~0004883
Suriv III 0~000 4883
V277 0~000 122 1

v345 0~000 122 1
12-Tricks Trojan 0.000 00 16

447

A. Doumas et al./lVeural network for virus recognition

APPENDIX B

The training set of the 300 viruses used in the experiments is depicted in Table Bl.

TABLE Bl. Computer viruses training set

12-Tricks
Scrambler
Fish Boot
Guillon
LZRQ
Cannabis
Boot Killer
HiDos
Keydrop
EDV
SF Virus
Swap
Den Zuk
Golden Gate
Ping Pong-B
Generic Boot
Ashar
FORM-Virus
Disk Killer
Chaos
Evil Empire-B
Bloody!
Filler
Exebug
Anti-Tel
Deicide
Typo Boot
Brazilian Bug
Attack
Dad
G&H
Holland Girl
Incom
Kennedy

JoJo
Cancer Virus
Ice 9
Argentina
Phantom
Solano 2000
Lisbon
Ant
dBASE
834
Ghostballs
1226
1704 Format
Murphy
Sentinel
923

Blood
Crew-2480
621
Polimer
Swiss 143
Violator
Meditation
Marauder
Civil War
Kalah
Tumen
MGTU
Polish 217
PhoenixD
Polish Tiny
Parity
Manta
LiveChild
Necro Fear
Bebe
Cerburus
MG
Medical
VirDem-1542
Iraqui Warrior
Vienna
Hell
DOSHunter
Revenge attacker
Frogs
Beeper
Devil’s Dance
OMT
Taiwan
Best Wishes
Anti-Pascal II

Hybryd

J:
Violator B4
1253
Japan Christmas
vcs 1.0
Wisconsin
Attention!
Evil
Phoenix
Icelandic-II
Close
Siskin

Westwood

982 ’
Fu Manchu
Smack
Frere Jacques
ABC
Slayer Family
Saturday 14TH
Plastique-B
Krivmous
CD
Maltese Amoeba
Invader
Define
Blaze
4870
Nowhere Man
Burger
Viper
Leprosy
Harakiri
Psychogenius
Pascal-5220
Small-38
382 Recovery
Silver Dollar
Shhs
Gnose
Italian 803
Ear
Funeral
All sys 9
Necro Shadow
Sistor
RSP-1876
Bow
1575
ZK900
Possessed
RAM Virus
1392
Jerk
Akuku
Rybka
V483
Zaragosa
BFD
Internal
RefRef

Multi-Face
Something
Armagedon
Troi
Parasite
Albania
66A
Grapje
Lazy

JoJo
AT144
F-Word Virus
Saddam

GUPPY
Mutant family
AIDS II
Little Brother
The Plague
AIDS
981
Groen Links
Joker 2
Traceback II
Eight Tunes
Sunday
RNA
Little Pieces
Yankee 2
Thursday-12
Taiwan 4
Bios
Tack
1963
Lycee
VMem
4096
Gremlin
1024 SBC
Haifa
Dir-2
Whale
Fish
Mayak
svc 5.0
Virus-101
VP
Hydra Family
Worm-16850
Horror
Green Peace

Sad
Ant0
Chad
Green Joker
Europe-92
646
Bryansk
Davis
MPS 4.01
Icelandic
Icelandic-III
Got-You
Cossiga
Pa
MIX’1
557
Invol
NCU LI
Animus
Dark Avenger
Little Girl
Black Monday
v2000
Paris
Nomenklatura
M.1.R
Anthrax.
v2100
Crazy Eddie
Liberty-2
Liberty
Plumbum
cv4
Kuku-448
StarDot 600
USSR
Witcode
Flip
Happy new year
Ha
Arf
595
ARCV Friends
Terminator
Null-178
Print Screen
Warning
10 Past 3
Kthulhu
Naughty hacker

Cascade-B
Datacrime
Label
Twin Peaks
Itti
Amstrad
Malmsey
I-B
Explode
Lehigh
Mindless
1554
Datacrime IIB
Prime
Casper
Emmie
Dir Virus
Bomber
Scroll
Globe
DisDev
Busted
Clonewar
Hacktic
Dutch Tiny
PC Flu-2
Caz
Sunday-2
Spanish
Silly Willy
DataLock
Damage
Green Caterpillar
Keypress
5120
Victor
Dima
WordSwap
Groove
Kemerovo
Father Christmas
Headcrash
Hitchcock
CSL
Saratoga
Itavir
99%
Tequila
Crusher
Shield

448

