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A sufficient number of experiments has been conducted to 

ascertain that a neural network can be used as a component of 

a computer security system for the recognition and classifica- 

tion of computer virus attack. A set of attributes that describe 

the system activity and the behavtour of computer viruses has 

been identtfied. The error back propagation training algorithm 

and the self-organizing feature map have been studied. Several 

experiments were conducted using both algorithms, different 

learnmg parameters, and two different training sets. For each 

architecture, the size of the network with the best perform- 

ance was estimated experimentally. Results indicate that both 

neural networks can discriminate input patterns, at almost the 

same level of accuracy. The number of neurons requtred for 

the solution of the specific problem using a multilayer percep- 

tron network was smaller than the respectwe number for a 

self-organizmg feature map network. Therefore. usmg back 

propagation, the training and the recall process were faster. In 

conclusion, neural networks were proved to be efficient and 

practical devtces for computer virus rccognttion and classitica- 

tion, in certain environments. 
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1. Introduction 

T he number of computer viruses developed to 
infect contemporary computer systems increa- 

ses rapidly [l-3]. U sers usually have limited 
knowledge about viruses. Thus, in the case of an 
intrusion, they cannot easily identify a virus with- 
out help; even less can they take appropriate 
countermeasures to deal with the problem [4]. It 
is therefore necessary to build systems that will be 
able to monitor the actions performed in a com- 
puter system, to detect which of these actions are 
malicious, and to decide if these malicious actions 
are due to the activity of a computer virus that has 
intruded the system. In this sense, a computer 
virus can be considered as another type of com- 
puter user. 

Several models of intrusion detection systems 
have already been designed [5-91. Most of today’s 
intrusion detection systems are based on the idea 
of analysing the audit trails. The audit trails are 
sets of audit records gathered through a specific 
auditing mechanism. This auditing mechanism 
must act below the insecure parts of the system 
under monitoring. 

Denning [6, 71 proposed a model for a real-time 
intrusion detection expert system. This model is 
independent of any particular system, application 
environment, system vulnerability or type of 
intrusion, and provides detection of penetrations 
and security violations. The audit records for this 
model are generated by the target system in 
response to actions performed or attempted by 
subjects (initiators of activity) on objects (resour- 
ces managed by the system, e.g. files, programs, 
etc.). This type of audit record contains informa- 
tion about the subject of a specific action, the 
object, the action, information about an exception 
condition that is raised by the system on return 
and information about the usage of resources. 
This model includes profiles for representing the 
behaviour of subjects with respect to objects in 
terms of metrics and statistical models, and rules 
for acquiring knowledge about this behaviour 

from audit records and for detecting anomalous 
behaviour. 

At the Computer Science Laboratory of SRI a 
similar expert system, the Intrusion Detection 
Expert System (IDES) [ 10, 111, was designed. 
The purpose of this model was to observe behav- 
iour on a monitored system and to learn adap- 
tively what is normal for an individual as well as a 
group of users and remote hosts. The main com- 
ponents of this model are subjects, objects, audit 
records, profiles, anomaly records and activity 
rules. The model tries to monitor the standard 
operations on a target system, without dealing 
with specific subjects or objects. Intrusion detec- 
tion is based only on deviations from an expected 
behaviour, and security violations can be detected 
from abnormal patterns of system usage that can 
be represented by audit records. These audit 
records can describe, as in Denning’s intrusion 
detection model, the actions performed or attemp- 
ted by subjects on objects. IDES maintains a data- 
base of statistical profiles corresponding to the 
description of subjects’ behaviour in terms of met- 
rics and statistical models. Such an experimental 
anomaly detector based on statistical tests for 
abnormality, considering deviations from an 
expected behaviour, could be applied in the case 
of a virus attack. 

In the approach discussed here, it is deemed that 
there is a mechanism that monitors the activity of 
a computer system (e.g. a computer network) and 
creates a set of audit records. An expert system 
module or a neural network module can analyse 
the audit trail to detect irregular activity on the 
system. If irregular activity is detected, a neural 
network that is responsible for computer virus 
classification is triggered, to specify which virus 
has infected the system. 

Furthermore, this neural network module could 
be independently used as a computer virus classi- 
fication and recognition module by a system that 
can help users to detect and classify viruses in 
case of attack [9]. Artificial Neural Networks 
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(ANNs)-after training by introducing specific 

attributes [ 1, 31 of virus behaviour-can recognize 

a wide variety of viruses and determine whether a 

set of actions constitutes virus behaviour. 

This paper deals with the implementation of an 
ANN that is able to recognize whether a set of 

attributes of system activity implies the presence 
of a specific virus. Two algorithms are studied to 

tind the solution for this kind of problem: the 

first is the Error Back Propagation training algo- 

rithm (BP) of Multilayer Perceptrons [ 12-151 and 
the other is the Self-organizing Feature Maps 

(SOFM) training algorithm [16-181. In detail, the 
classification accuracy and the computational effi- 

ciency of a layered neural network trained with 

the BP training algorithm is compared to that of a 
classifier trained on the same data with the 

SOFM. 

2. General ANN architectures 

ANNs are an old field of research for computer 

scientists, but because of their inability to over- 

come theoretical barriers they were not used for 
several years. Many learning algorithms for neural 

networks have recently appeared [ 12, 131 and have 
stimulated the application of ANNs to new prob- 

lem areas 19, 19--211. 

An artificial neural network (ANN) can be 

defined [ 15, 221 as an interconnection of neurons, 

such that neuron outputs are connected through 

weights to all others, including sometimes 

themselves. 

A neuron is a linear automaton which realizes a 

weighted sum of several inputs according to a set 
of weights, and then computes an activation or 
transfer function to obtain an output value, called 

activation of the neuron. Weights measure the 
degree of correlation between activity levels of the 

neurons they connect [23]. Neural networks are 
often arranged in layers of neurons. 

Neural network models can be classified by their 

synaptic connection topologies and by how learn- 
ing modifies their connection topologies 1221. A 

synaptic connection topology and the correspond- 

ing neural network is feedforward if it contains no 

closed synaptic loops. The neural network is a 

feedback or recurrent network, if its topology con- 
tains closed synaptic loops or feedback pathways. 

In a feedforward network the output is an explicit 
function of the input. The input is propagated 

through the network and produces the output 

right away. The mapping of an input pattern x 

into an output pattern o involves no time delay 
between the input and the output. 

In a contrast, feedback networks always need 
some kind of relaxation to reach their equilibrium 

state or attractor. In a third category of neural 

network architectures, neighbouring cells in a 
neural network compete [16, 17, 24-261 in their 
activities by means of mutual lateral interactions, 
and develop adaptively into specific detectors of 

different signal patterns. In this categov, learning 

is called competitive or self organizing. 

Neural networks learn or adapt when their syn- 
aptic topologies change. A system learns or adapts 

or ‘self-organizes’ when sample data change 

system parameters. In neural networks, learning 

means any change in any weight. 

An unknown probability density function /l(x) 

describes the continuous distribution of input pat- 
terns x in the pattern space R”, a few of which the 

neural system samples [22]. Learning seeks only 
to accurately estimate p(x). There is no need for 

learning if p (x) is already known. Sometimes a set 
of input patterns is divided into a number of deci- 

sion classes 01 categories D,, Dl. , Dk In 

response to an input pattern in the set, a classifier 

is supposed to recall the information regarding 
class membership of the input pattern [ 15, 27, 

281. This process is called classification. If the 
network’s desired response is the class number 
but the input pattern does not exactly correspond 
to any of the patterns in the set, the processing is 
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called recognition. When a class membership for 

one of the patterns in the set is recalled, recogni- 
tion becomes identical to classification. Neural 
networks can operate as effective pattern classi- 

fiers. The decision classes may correspond to high 
probability regions of the probability density func- 

tion P(X). Class boundaries then correspond to 

low probability regions on the probability 

hypersurface. 

3. BP learning in multilayer perceptrons 

Multilayer perceptrons [12, 13, 15, 29-311 are 

feedfonvard networks with one or more layers of 

nodes between the input and the output layer. 
These layers, that do not have direct connection 
to the outside world, are called hidden layers. 

The most important attribute of a multilayer feed- 
forward network is that it can learn a mapping of 

any complexity [ 15, 321. It can implement arbi- 

trary complex input/output mappings or decision 
surfaces separating pattern classes. The network 
learning is based on repeated presentations of 

training samples. The trained network often pro- 
duces impressive generalizations in applications 

where explicit derivation of mappings and discov- 
ery of relationships is almost impossible. This 

kind of network is usually trained with the error 
back propagation training algorithm. 

The BP training algorithm is an iterative process 

in which an output error signal is propagated back 

through the network and is used to modify weight 
values so that the current least mean-square classi- 
fication error is reduced. Because BP learning is 

so important, it is summarized below in terms of 
a step-by-step procedure. 

Given are P training pairs {xi, di, x1, dz, . . . , xp, 
d,}, where X~ is an (f x 1) input pattern, d, is a 
(Kx 1) desired output vector, p = 1, 2, . . . , P and 
P is the total number of input patterns. The num- 
ber of hidden neurons is J- 1. The outputs y of 
the neurons of the hidden layer and the outputs o 

of the output layer are of dimension (J x 1) and 

(K x l), respectively. 

Step 1: Learning rate n >O, momentum constant 
a >0 and a maximum error value E,,, are chosen. 

Weights of the output layer W and of the hidden 

layer V are initialized at small random values. W is 

(Kx_/)andVis(]xI).Also,qcl,ytl,E+O. 

Step 2: The training steps start here. Input is pre- 

sented and the layers’ outputs computed: x+x~, 

d+d,, yj =f(vjx), for j = 1, . . ., J, where uj (a 
column vector) is the jth row of I/ and ok = 

f(t.uBy), for k = 1, . . . . K, where wk (a column 

vector) is the k th row of I&‘. 

Step 3: Error value is computed: 

E= (l/2) ; (drok)2+E. 
k=l 

Step 4: Error signal vectors e, and e, of both layers 
are computed. Vector e, is (Kx 1) and e, is 

(_J x 1). The error signal terms of the output layer 

in this step are: e& = (dk-ok)fk (hk), for k = 1, . . . , 
K. The error signal terms of the hidden layer in 

this step are: 

$j =_fj (hj) c eok Wkj , 

forj = 1, . . ..I. 

Step 5: Output layer weights are adjusted: 

AWkj(q)CneobXI+a.Avji.(q-l), for k = 1, . . . . K 
andj = 1, . . ..J. 

Step 6: Hidden layer weights are adjusted: 

Aliii(4)cne,-x,+a’AtIii(4-1), for j= 1, . . ..J and 
i= 1, . . ..I. 

Step 7: IfptP, thenp+-p+l, qtq+l and go to 
Step 2; otherwise go to Step 8. 

Step 8: The training cycle IS completed. If Ec 
E rnax, then terminate the training session. Output 
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weights are I&‘, I’, q and E. If E > E,,, then E+O, 
p+ 1 and initiate the new training cycle by going 

to Step 2. 

4. Self-organizing feature mapping 

Self-organizing feature mapping (SOFM) [16-l& 

331 is based on a neural network that consists of 
two layers, an input layer and an output layer. The 

input layer is a dummy layer that feeds the output 
layer with the input patterns. Each neuron of the 
output layer is connected to every neuron of the 

input layer via a set of variable reference or code- 

book vectors zu E R”. 

The basic principle underlying SOFM is com- 
petitive learning; especially, Vector Quantization 

(VQ) [34] which IS a classical method that pro- 
duces an approximation to a continuous probabil- 

ity density function p(x) of the vectorial input 

variable x, using a finite number of codebook vec- 
tors w;, for i = 1, 2, . . , k (where k is the number 
of neurons in the output layer for the SOFM 

case). Once the codebook is chosen, the approx- 
imation of x involves finding the reference vector 

w, (winner) closest to x. 

In the above principle, the spatial relationships of 
the resulting ‘feature-sensitive cells’ are not con- 

sidered. All the cells act independently. Therefore 

the order in which they are assigned to the differ- 
ent domains of input signals is more or less hap- 

hazard, most strongly depending on the initial 
values of the zu,. Such systems are often called 

zero-order topology networks [lS]. In the models 

called maps, on the other hand, the localized 
feature-sensitive cells respond to the input signals 

in an orderly fashion, as if some meaningful coor- 
dinate system for different input features, reflect- 

ing some topological order of events in the input 
si&nal space, were drawn over the ANN. Depend- 

ing on the connectivity, such networks can then 
be named n-order topology networks. A second- 
order topology network is a planar, with a two- 
dimensional coordinate system defined over it. 

Kohonen [161 has introduced a self-organizing 

algorithm that effectively produces a global order- 
ing over the network, the latter often reflecting 

rather abstract relationships of the data. It is cru- 

cial to the formation of ordered maps that the 
cells doing the learning are not affected independ- 

ently of each other, but as topologically related 

subsets, on each of which a similar kind of correc- 
tion is imposed. Such selected subsets or blocks 

are defined as neighbourhood sets N, around a 
neuron c. 

The self-organizing feature map aigorithm is 

explained below for a planar array of neurons 

(Kxj). Given are P input patterns {x1, x2, . . , 
xP},wherexPiisan(nxl)inputpattern,p=l...., 
P and P is the total number of input patterns. The 

weight vector of neuron i is denoted by ~1, E R”. 
The Euclidean distance is used here as a more 

convenient measure of similarity between x and 

w,. 

Step I: t+O. Learning rate a(t) = 0, neighbour- 

hood radius N, (t) > 0 and a maximum error value 
E ITldx are chosen. The weights W are initialized at 

small random values. W is (n x K x I), p+ 1, E+O. 

Step 2: Training steps start here. Input is pre- 

sented. Find the winning neuron c for which the 
best match with input x is calculated according to: 

(I x-w, 11 = min{ 11X-wi II>. 

Step 3: Error value is computed: 

E = (l/2) C (I()~-w~,,)’ +E. 
,=I 

Stey 4: Weights are adjusted according to (1st 

variant): 

wf (r + ‘) = i 

Wr(t)+U(t)[X(t)-lui(t)], ifiEN,(t), 

UJ, (t), if i $ N,-(t), 

for i = 1, . . . . n. 
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A proper form for a (Ni, t) might be u (Ni, 
t) =a(t) exp[- I( ri-rc ]]2/(2N,2(t))], where r, and 
ri are the position vectors of the winning cell and 
of the winning neighbourhood nodes, respec- 
tively, and a(t) and NT(t) are suitably decreasing 
functions of learning time t. In the above equa- 
tions O<a < 1. 

Step 5: Ifp<P, then p+-p+l, t+-t+l, and go to 
Step 2; otherwise go to Step 6. 

Step 6: The training cycle is completed. If E< 
E rnax, then terminate the training session. Output 
weights are W and E. If E >E,,, then Et 0, pt 1 
and initiate the new training cycle by going to 
Step 2. 

5. Computer virus coding 

A computer virus can be defined [35] as a piece of 
code (program) containing a self-reproducing 
mechanism riding on other programs and which 
cannot exist by itself 

A neural network can be trained to recognize the 
behaviour of a virus. This behaviour can be 
described by a set of attributes that correspond 
with or are the same as the attributes that describe 
activity on a computer system in audit records. 

In the recall phase, when a set of attributes of 
system activity is presented in the input of the 
neural network, the latter should be able to recog- 
nize whether the behaviour depicted in this set is 
the same or similar to the behaviour of a specific 
virus that the neural network has been trained 
with. Thus, such a neural network can be used to 
analyse (probably in association with an expert 
system) the audit trails that a mechanism which 
monitors the activities on a computer system run- 
ning a DOS operating environment generates, and 
to decide about the existence of computer viruses. 
The Threat Description Language for viruses 
from the Computer Virus Catalogue from Virus 
Test Centre (VTC) [3] and the Virus Information 

Summary List [2] could provide a first coding of 
the input for a neural network. 

The set of attributes, specific values for which are 
used as input to the neural network in order to 
describe the behaviour of a specific virus, is depic- 
ted in Table 1. Most of the attributes can take the 
symbolic values Yes’, ‘No’, ‘Unknown’, that cor- 
respond to the numeric values 1, - 1, 0 (or 1, 0, 
0.5) respectively, excluding the attributes for 
which these values are defined explicitly. 

There are two different training sets which were 
used in the training and the recall phase for both 
types of network. The first training set contains 49 
computer viruses (Appendix A) described by 38 
virus characteristics that are almost similar to the 
list of characteristics arranged in Tables 1, 2 and 3, 
that correspond to 48 different classes. The second 
set contains 301 viruses corresponding to 301 dif- 
ferent classes described with the 40 virus charac- 
teristics. The 300 patterns represent 300 computer 
viruses (Appendix B) and the remaining pattern 
represents the information that no virus exists. 
Each pattern is coded according to the above 
attribute values. 

6. Virus classification via back propagation 

A commercially available software product (Neu- 
ral Works) was used for the implementation of the 
error back propagation training algorithm. A suffi- 
cient number of training experiments has been 
made with both training sets. 

The training experiments with the second training 
set showed the best and most interesting results. 

TABLE 1. Numeric values of length size attribute 

Length size 

Number of bytes 

No 

Undefined 

Varying 

6 

-1 

-3 
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TABLE 2. Virus attributes list 

Attribute 

Program virus 

COM files 

EXE files 

COMMAND.COM tile 

Extending 

Stealth techniques 

Self encryption 

Boot sector 

Hard disk boot sector 

Floppy disk boot sector 

Floppy only 

Boot corruption 

Dtsk corruption 

Program/Overlay corruption 

Data corruption 

System hangs and crashes 

System reboots 

Dtsk problems 

Prmter problems 

Ports problems 

Keyboard problems 

Resident 

Overwrite\ 

Spawning 

File linkage 

Rtmtime slowdown 

Bad or lost sectors 

Format 

Created files 

Hidden files 

Change size 

Length size 

Date/time change 

Visual display effects 

Vizus screen message 

Unexpected errors 

Beep noise 

Melody 

Infection trigger 

Damage trigger 

Description 

The virus is a program virus. 

The virus infects COM files. 

The virus infects EXE files. 

The virus infects the COMMAND.COM file. 

The virus extends the size of an infected program file. 

The virus uses stealth techniques. 

The virus uses self-encryption techniques. 

The virus infects the partition table of the hard disk or the floppy disk boot sector. 

The virus infects the DOS boot sector of a hard disk. 

The virus infects the boot sector of a floppy diskette. 

The virus infects only the boot sector of a floppy diskette. 

The virus corrupts/overwrites the boot sector or the partition table. 

The virus corrupts all or part of disk. 

The virus corrupts program or overlay files. 

The virus corrupts data tiles. 

The virus hangs up or crashes the system. 

The virus creates unexpected system reboots. 

The infected system will experience dtsk problems. 

The infected system will experience printer problems 

The infected system will experience ports problems. 

The infected system will experience keyboard problems 

The virus installs itself in memory. 

The virus overwrites the beginning of a file. 

The virus creates a companion file with the viral code. 

Directly or indirectly corrupts the file linkage. 

The virus affects system run-time operations. 

The virus creates bad or lost sectors. 

The virus formats or overwrites all or part of disk 

Existence of associated tiles. 

The virus creates hidden tiles. 

The virus changes the size of an infected program file. 

The number of bytes by which the size of the infected file will be increased 

The virus changes the date or the time of the infected file. 

The virus has some visual display effects. 

The virus displays a message on the screen. 

The virus displays some unexpected errors. 

The virus creates some beep. 

The virus plays a melody. 

Events which trigger the vnuses to infect. 

Events which trigger the viruses to begin their damage 

In the first training experiments the second train- The multilayer perceptron with the best perform- 
ing set contained 298 viruses instead of 301 ante was that with one hidden layer and 27 
viruses. Nine different multilayer perceptron net- hidden neurons. This network was tested with 
works were developed and tested with different different values for the parameters of the learning 
values for the learning rate and momentum para- rate, the momentum and the noise. These para- 
meters (Table 4). meters are given in Table 5. After 250000 training 
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steps, the network correctly created 301 different 

classes. 

7. Virus classification via SOFM 

The best solution for the implementation of the 

SOFM was considered to be the development of a 

software tool in the C programming language. 
This program implements the two different vari- 
ants of the self-organizing feature map training 

algorithm described above and this implementa- 
tion is independent of the specific virus classifica- 

tion problem. 

In the first variant of the self-organizing feature 
map algorithm, the learning rate c( and the neigh- 

bourhood radius are decreased exponentially every 

time a predefined number of training steps 

(sweep) has been accomplished. For the adapta- 
tion of the weights wli a Mexican hat lateral 
inhibition type function (Gaussian), of the form 

of the function a (Ni, t) defined in Section 4, has 
been used. The training phase lasts a specific 

number of epochs. The epoch (learning cycle) is 
defined as a complete presentation of the training 

set. 

TABLE 3. Numeric values of infection and damage triggers 

Infection trigger Damage trigger 

Load/execute -1.0 Load/execute -1.00 

Random -0.7 Random -0.75 

Counter -0.4 Counter -0.50 

No trigger 0.0 Infection time -0.25 

Other 0.4 Other 0.00 

Boot process 0.7 No trigger 0.25 

Any time I.0 CTRL-ALT-DEL 0.50 

Boot process 0.75 

TABLE 5. Learning parameters of the training experiment 

According to the second variant of the self- 

organizing feature map, the training process is 
composed of two training phases. In the first 

training phase the initial (or coarse) ordering of 

the network activity is attained. Spatial concentra- 

tion of the network activity on the cell (or its 

neighbourhood), best tuned to each input, is 
achieved. In the second phase (final ordering), 
further tuning of the best-matching cell and its 

topological neighbours to the present input is 

done. In both phases (initial and final), the learn- 
ing rate CI and the neighbourhood radius are 

decreased linearly every time a predefined number 
of training steps (sweep) has been accomplished. 

The adaptation of weights is based on the first 
formula which is defined in Step 4 of the SOFM 

algorithm. According to this formula, all weights 

of the output neurons that belong to the neigh- 

bourhood are defined according to the neighbour- 
hood topology, that can be either circular or 

rectangular, and the neighbourhood radius N,(t) 
around the winning neuron c. 

TABLE 4. Results of training experiments with back 

propagation 

Network Number Hidden Final error Training Noise 

of viruses units steps 

1st 298 70 0.000 020 245 064 

2nd 298 50 0.000 027 200001 

3rd 298 30 0.000 030 225 074 

4th 301 50 0.000 006 184945 

5th 301 30 0~000010 157220 

6th 301 20 0.000 170 234 905 

7th 301 25 0.000 090 250000 

8th 301 30 0.000 009 195597 \/ 

9th 301 27 0~000012 233211 \: 

Training steps I-60000 60001-120000 120001-160000 16000-200000 200001-250000 

Noise 10 0 10 0 0 

Learning rate 0.9 0.9 0.4 0.4 0.2 

Momentum 0.6 0.6 0.4 0.4 0.3 
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Three different diagrams are used to depict the 

state of the network for each training step. The 
first one is a Hinton-type diagram which repre- 

sents the distances between the input patterns and 
the weight vectors of the output nodes. The 

smaller the distance, the larger the corresponding 
rectangle of the Hinton diagram and the closer the 
input pattern to the corresponding weight vector 

of the output node. The second diagram is a bar 

chart, representing each input pattern the accuracy 
with which a specific element of the weight vector 

of the winning node for this pattern approximates 
the corresponding element of this pattern. Each 

bar of this diagram represents the accuracy of a 
specific element. With this diagram we can exam- 

ine how good a winning node is for a specific 

input pattern. The third diagram represents the 

following error 

E = j 11 x-w, ll’p(x) dx 

approximated by the RMS error 

where x is the current input pattern, w, is the 
weight vector of the winning node that corre- 

sponds to this input pattern, np is the size of the 
training set and n is the dimension of the input 

patterns. 

In the following subsections, the results of some 
training experiments for the computer virus classi- 

fication problem, using the above variants of the 

self-organizing feature map algorithm, are given. 
These experiments were performed using only the 

first training set with the 49 computer viruses. 

A training experiment using the second training 
set of 301 computer viruses has been developed 

on a self-organizing feature map neural network 
with a planar array of 40 x 40 output nodes. The 

second variant of the algorithm has been applied. 
The training was continued for 300000 steps. At 
the end of the training process the network could 
not discriminate between the classes. It is esti- 

mated that a self-organizing feature map with at 
least 55 x 55 output nodes can create the appro- 

priate clustering for the 301 viruses. 

7.1 Experiments using the first variant of the SOFM 

A sufficient number of training experiments (6) 
using the first variant of the self-organizing fea- 

ture map has been done on a 386SX machine with 
co-processor. The experiment with the best 

results is presented here. A network with a planar 
array of 30 x 30 output nodes was created. 

The initial learning rate and neighbourhood 
radius were 0.5 and 20, respectively, each with a 

reduction factor of 0.98. The training process was 
continued for 4500 epochs. The sweep size was 

900 training steps. 

The final learning rate and neighbourhood radius 
had values very close to zero. The neural network 
had created 47 different clusters. The expected 

number of clusters is 48. The network had 
erroneously created one cluster for two input 

patterns that belong to two different classes. The 

RMS error vahle at the end of the training was 
0.0019. 

7.2 Experiments using the second variant of the 
SOFM 

A sufficient number of training experiments (4) 

using the second variant of the self-organizing 
feature map has been done on a 486DX machine. 
The experiment described in this subsection is the 

one with the best results. A network with a planar 
array of 30 x 30 output nodes was created. 

In the initial ordering, the initial learning rate and 
neighbourhood radius were 0.5 and 17, respec- 
tively, and the final learning rate and neighbour- 

hood radius were 0.04 and 1, respectively. The 
initial ordering process was continued for 3000 

epochs. The sweep size in this phase was 1 train- 

ing step. 

In the final ordering, the initial learning rate and 
neighbourhood radius were 0.04 and I, respec- 
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TABLE 6. Learning parameters of the experiments with the SOFM training algorithm 

1st variant 

Dimension 

Learning rate 

Learning rate reduction 

Neighb. size 

Neighb. size reduction 

Epochs 

Neighb. topology 

30x30 

0.50 

0.98 

20 

0.98 

4500 

Mexican hat 

2nd variant 

Dimension 

Initial learning rate 

Final learning rate 

Initial neighb. size 

Final neighb. size 

Epochs 

Neighb. topology 

Initial ordering Final ordering 

30x30 

0.50 0.04 

0.04 0 

17 0 

0 0 

3000 4811 

circular circular 

tively, and the final learning rate and neighbour- 
hood radius were 0 and 1, respectively. The final 
ordering process was continued for 4811 epochs. 
The sweep size in this phase was 1 training step. 
The neighbourhood topology that was selected for 
both initial and final ordering was ‘circular’. 

The neural network had created 48 different clus- 
ters. These clusters correspond to the 48 classes of 
the input patterns (Appendix A). This experiment 
showed the best results. The RMS error value at 
the end of the training was 0.000 0021. 

The training parameters for the best training 
experiments described in the above paragraphs are 
given in Table 6. Finally, the results of these 
experiments are summarized in Table 7. 

8. Practicality issues 

The use of a neural network for computer virus 
recognition and classification may require a sub- 
stantial level of computing overhead, thus decreas- 
ing the performance of a system in use. In 
particular, if its use is combined with an expert 
system, then the overhead is more serious. 

However, whether the above observation is indeed 
valid or not depends heavily on a number of fac- 
tors. In detail, it depends-inter aliu-on: 

l The assets to be protected. If the value of some 
of them is high enough, then the suggested 
architecture can often be considered as practica- 

TABLE 7. Results of the SOFM training experiments 

Variant Dimension Training steps Final error 

1st 30x30 220 500 0.0019 

2nd 30x30 382739 0~0000021 

ble, even if the performance of the system will 
be considerably degraded. In any case, the final 
decision on this issue must be based upon the 
findings of an appropriate risk analysis review. 

The risks and vulnerabilities of the system in 
use. In the case that the system in use provides 
input or operates in connection with a depend- 
able system (e.g. nuclear plant control informa- 
tion system, medical diagnosis information 
system, etc.) the suggested solution can be very 
well adopted as practicable, even if it leads to 
considerably lower performance of the system 
in use. 

The connectivity of the system in use. In the 
case of a network or an internetwork topology, 
the risk analysis review may very well lead to 
the conclusion that the use of a neural network 
for virus recognition and classification is indeed 
practicable, since the damaging potential of 
malicious software structures (viruses, worms 
etc.) in such environments is very high. It is 
common knowledge that today’s trend in con- 
nectivity is strongly towards these topologies. 

The computing power of the system in use. It 
can be expected that the performance of the 
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PCs of the forthcoming generations will be 
considerably higher than that of the machines 

available today. It is already a fact that the (per- 
formance) distance between ‘PC’ and Work- 
station’ machines is no longer very great, if it 

exists at all. 

The way the neural network is realized. Hard- 
ware-based neural networks provide an effective 

means for high performance virus recognition 
and classification mechanisms. 

As a result, it can evidently been concluded that 

even if the proposed solution may look-or be- 
impracticable in certain environments, it is prob- 

ably practicable in several other cases. The definite 
xxwer on its practicability is dependent on con- 

text and can be positively ascertained after a 
thorough risk analysis review. 

9. Conclusions 

Several neural network architectures have been 
studied. The most appropriate of them, namely 

multilayer perceptrons and self-organizing feature 
map networks, have been selected for the problem 

of computer virus recognition and classification. 

The behaviour of (DOS) computer viruses has 
been investigated and this behaviour has been 

described by simple parameters. These parameters 
were used for coding input data for several neural 

networks that were used in the training experi- 
ments presented in this paper. 

A series of experiments using two different train- 

ing sets, one with 49 computer viruses and 38 
virus parameters and the other with 301 viruses 
and 40 characteristics, was performed. The results 

from the experiments with both the SOFM and 
multilayer perceptrons are promising. 

The total number of neurons required for the 
construction of a multilayer perceptron network is 
smaller than the respective number for the 
SOFM. The number of neurons is one of the 

most significant factors for the training and the 

response (recall) time of a neural network. This is 
mainly why the training and the recall process 
were faster in the error back propagation training 

of the multilayer network. 

The accuracy of the results is good with both 
training algorithms, but training with the error 

back propagation showed very good results after 
only a few training experiments. 

In Table 8, a number of comparison results are 

given for the neural networks training on the 
generated training sets. 

Although the user does not provide any class 
membership information to the SOFM, this 

neural network can derive common attributes 
from the input patterns and create clusters of 

‘similar’ patterns. Consequently, using this neural 

network architecture, one can acquire knowledge 
about which class (cluster) an input pattern (com- 
puter virus information) belongs to, as well as 

knowledge about which are the nearest topological 
classes, i.e. classes with similar attributes. In con- 
trast, using the error back propagation training 

algorithm, one knows only the class an input pat- 

tern belongs to. 

In conclusion, we consider that the most efficient 

solution to the problem of computer virus classiti- 
cation and reco@tion with neural networks is the 

utilization of a multilayer perceptron neural net- 

work, trained with the error back propagation 
algorithm, because of its comparatively smaller 

training and recall (response) time. Evidently, if 
the neural network is going to the developed and 

TABLE 8. Comparison of back propagation against SOFM 

training algorithm 

Back propagation SOFM 

Number of nodes 27+301 55 x 5.5 

Training steps 233211 r400000 

Training time/step t 3.61 

Response time/step t 2.7r 
_____ 
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used with a considerably faster machine (faster 
than 100 MHz), both architectures can be applied. 

A drawback of the suggested architectures is that it 

is not difficult to be attacked if the mechanism is 
detected already in place. A good answer to this is 
to consider the mechanism as part of a well 

protected (trusted) system-software component 

(trusted kernel), which in turn leads to the need 
to design such a kernel. Furthermore, this con- 

sideration can be combined with a hardware-based 
realization of the proposed solution. 

Another drawback of the neural network archi- 

tectures is that, if we want to extend the neural 
network classifier ability by adding more com- 

puter virus categories (since it can fight most 

new viruses that fall into one of the existing cate- 
gories), we have to start the training procedure 
from scratch and must sometimes add neurons to 

the network. However, again, neural networks are 
a good choice for implementation in hardware, 

where both learning and recognition would be 
considerably fast and secure. 
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APPENDIX A 

Table Al shows the coordinates of the winning node of the output planar array for each cluster, the virus 
patterns that belong to this cluster, and the Euclidean distance between each pattern and the winning node 

of its cluster. 

TABLE Al. Clusters of computer viruses 

Cluster Name Euclidean 

distance 

Cluster Name Euclidean 
distance 

(11, 22) 
(24, 28) 
(05, 10) 

(28, 28) 

(12, 09) 

(07, 16) 
(19, 16) 

(00, 25) 
(28, 02) 

(07, 29) 
(07, 04) 
(22, 05) 
(00. 00) 

(08, 11) 

(01, 02) 

(14, 19) 
(33, 15) 

(14, 00) 
(14. 04) 
(00, 29) 

(03. 07) 
(00. 14) 
(26. 13) 
(00. 11) 

1971/8 Times 0.000 4883 
4096 0.000 9766 

512 0~0000014 
5120 0.001953 1 
Amstrad 0.0002441 
Cancer 0.000 4883 
Cascadell7Ox 0.000 3662 
Cascade-B/l 701 0.000 3662 
Dark Avenger 0.000 4883 
Datacrime/ 0.000 4883 
DBASE 0.000 4883 
Den Zuk 0~0000018 
Devil’s Dance 0.000 2441 
Disk Killer 0.000 002 1 
Do Nothing 0.000 2441 
Form 0.000 0026 
Fu Manchu 0.000 9766 
Ghost COM 0.000 9766 
Icelandic 0.0002441 
Icelandic II 0.000 244 1 
Jerusalem 0.000 4883 
Lehigh 0~0000014 
Lisbon 0.000 2441 
MIX1 0.000 4883 
Munich 0.000 0022 

(25, 07) 

(13, 28) 

(04704) 

(19,OO) 
(04, 00) 

(23, 00) 
(04, 02) 

(10, 14) 
(24, 24) 

(18, 29) 
(10, 04) 
(19, 10) 

(04, 13) 

(08,08) 
(04, 19) 

(28924) 

(03, 43) 
(16,25) 
(01, 08) 

(00, 18) 
(03,27) 
(00, 05) 

(10, 00) 
(07, 00) 

Murphy 0.000 4883 
Oropax 0.000 9766 
Ping Pong-B 0~0000018 
Saratoga 0.000 2441 
Stoned 0~0000017 
Suriv A 0.000 2441 
Swap Boot 0.000 0026 
Sylvia 0.000 4883 
Syslo&355 1 0.000 7324 
Traceback 0.000 9766 
V299 0.000 1221 
Vacsina 0.000 4883 
Vienna/648 0.000 244 1 
Yale/Alameda 0~0000015 
Zero Bug/1536 0.000 4883 
Machosoft 0.000 7324 
Shoe-B 0.000 0020 
Advent Virus 0.000 9766 
I-Iello-1A 0~0000016 

Murphy II 0~0004883 
Suriv III 0~000 4883 
V277 0~000 122 1 

v345 0~000 122 1 
12-Tricks Trojan 0.000 00 16 
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APPENDIX B 

The training set of the 300 viruses used in the experiments is depicted in Table Bl. 

TABLE Bl. Computer viruses training set 

12-Tricks 
Scrambler 
Fish Boot 
Guillon 
LZRQ 
Cannabis 
Boot Killer 
HiDos 
Keydrop 
EDV 
SF Virus 
Swap 
Den Zuk 
Golden Gate 
Ping Pong-B 
Generic Boot 
Ashar 
FORM-Virus 
Disk Killer 
Chaos 
Evil Empire-B 
Bloody! 
Filler 
Exebug 
Anti-Tel 
Deicide 
Typo Boot 
Brazilian Bug 
Attack 
Dad 
G&H 
Holland Girl 
Incom 
Kennedy 

JoJo 
Cancer Virus 
Ice 9 
Argentina 
Phantom 
Solano 2000 
Lisbon 
Ant 
dBASE 
834 
Ghostballs 
1226 
1704 Format 
Murphy 
Sentinel 
923 

Blood 
Crew-2480 
621 
Polimer 
Swiss 143 
Violator 
Meditation 
Marauder 
Civil War 
Kalah 
Tumen 
MGTU 
Polish 217 
PhoenixD 
Polish Tiny 
Parity 
Manta 
LiveChild 
Necro Fear 
Bebe 
Cerburus 
MG 
Medical 
VirDem-1542 
Iraqui Warrior 
Vienna 
Hell 
DOSHunter 
Revenge attacker 
Frogs 
Beeper 
Devil’s Dance 
OMT 
Taiwan 
Best Wishes 
Anti-Pascal II 

Hybryd 

J: 
Violator B4 
1253 
Japan Christmas 
vcs 1.0 
Wisconsin 
Attention! 
Evil 
Phoenix 
Icelandic-II 
Close 
Siskin 

Westwood 

982 ’ 
Fu Manchu 
Smack 
Frere Jacques 
ABC 
Slayer Family 
Saturday 14TH 
Plastique-B 
Krivmous 
CD 
Maltese Amoeba 
Invader 
Define 
Blaze 
4870 
Nowhere Man 
Burger 
Viper 
Leprosy 
Harakiri 
Psychogenius 
Pascal-5220 
Small-38 
382 Recovery 
Silver Dollar 
Shhs 
Gnose 
Italian 803 
Ear 
Funeral 
All sys 9 
Necro Shadow 
Sistor 
RSP-1876 
Bow 
1575 
ZK900 
Possessed 
RAM Virus 
1392 
Jerk 
Akuku 
Rybka 
V483 
Zaragosa 
BFD 
Internal 
RefRef 

Multi-Face 
Something 
Armagedon 
Troi 
Parasite 
Albania 
66A 
Grapje 
Lazy 

JoJo 
AT144 
F-Word Virus 
Saddam 

GUPPY 
Mutant family 
AIDS II 
Little Brother 
The Plague 
AIDS 
981 
Groen Links 
Joker 2 
Traceback II 
Eight Tunes 
Sunday 
RNA 
Little Pieces 
Yankee 2 
Thursday-12 
Taiwan 4 
Bios 
Tack 
1963 
Lycee 
VMem 
4096 
Gremlin 
1024 SBC 
Haifa 
Dir-2 
Whale 
Fish 
Mayak 
svc 5.0 
Virus-101 
VP 
Hydra Family 
Worm-16850 
Horror 
Green Peace 

Sad 
Ant0 
Chad 
Green Joker 
Europe-92 
646 
Bryansk 
Davis 
MPS 4.01 
Icelandic 
Icelandic-III 
Got-You 
Cossiga 
Pa 
MIX’1 
557 
Invol 
NCU LI 
Animus 
Dark Avenger 
Little Girl 
Black Monday 
v2000 
Paris 
Nomenklatura 
M.1.R 
Anthrax. 
v2100 
Crazy Eddie 
Liberty-2 
Liberty 
Plumbum 
cv4 
Kuku-448 
StarDot 600 
USSR 
Witcode 
Flip 
Happy new year 
Ha 
Arf 
595 
ARCV Friends 
Terminator 
Null-178 
Print Screen 
Warning 
10 Past 3 
Kthulhu 
Naughty hacker 

Cascade-B 
Datacrime 
Label 
Twin Peaks 
Itti 
Amstrad 
Malmsey 
I-B 
Explode 
Lehigh 
Mindless 
1554 
Datacrime IIB 
Prime 
Casper 
Emmie 
Dir Virus 
Bomber 
Scroll 
Globe 
DisDev 
Busted 
Clonewar 
Hacktic 
Dutch Tiny 
PC Flu-2 
Caz 
Sunday-2 
Spanish 
Silly Willy 
DataLock 
Damage 
Green Caterpillar 
Keypress 
5120 
Victor 
Dima 
WordSwap 
Groove 
Kemerovo 
Father Christmas 
Headcrash 
Hitchcock 
CSL 
Saratoga 
Itavir 
99% 
Tequila 
Crusher 
Shield 
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